CalEPA Meeting #4 of the California Lithium-Ion Car Battery Recycling Advisory Group

THE ReCell CENTER

Jeff Spangenberger

Argonne National Laboratory Director, ReCell Center Materials Recycling R&D Program Lead

July 16th, 2020

ENERGY Energy Efficiency & Benewable Energy

VEHICLE TECHNOLOGIES OFFICE

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. http://energy.gov/downloads/doe-public-access-plan

SETTING THE STAGE

8 Spent battery volume (million metric tons) 6 Δ 2 2025 2026 2027 2028 2029 2033 2034 2035 2036 2037 2038 2039 2040 2032 US China Europe Rest of World

Projected Global Spent EV Battery Volume

- An increase of lithium-ion batteries coming in electric vehicles (EV)
 - Consumer electronics collection is an issue
 - Stationary applications can be in remote locations
- Cannot meet EV material demand without recycling

⁽ANL projection based on IEA global PEV projection)

CURRENT PROCESSING

- Recycling lithium-ion batteries is possible today
- These processes are mature
- Produce lower value products and are not revenue positive without tipping fees for many chemistries
- The U.S. is trailing other countries in battery recycling

THE RECELL CENTER

Purpose

- Foster the development of cost-effective, environmentally sound processes to recycle lithium-ion batteries
- Bring together experts from various battery recycling areas and bridge the gaps
- Efficiently address the many challenges that face a successful advanced battery recycling infrastructure

Outcome

- Minimize use of the earth's limited resources, reduce energy consumption and increase our national security
- Provide stability to the battery supply chain
- Drive battery pack costs down to DOE's \$80/kWh usable energy goal in about 10 years (currently \$185/kWh)

THE RECELL CENTER'S MISSION

Decrease the cost of recycling lithium-ion batteries to ensure future supply of critical materials and decrease energy usage compared to raw material production

ENERGY Energy Efficiency & Renewable Energy VEHICLE TECHNOLOGIES OFFICE

CENTER RIBBON CUTTING

February 2019

US Seeks Ways To Recycle Lithium Batteries In Cars, Phones

the japan times

recycling

National

Green Car Congress

ENERGY Energy Efficiency Renewable Energy VEHICLE TECHNOLOGIES OFFICE South China Morning Post

The Chronicle Journal

DOE VEHICLE TECHNOLOGIES OFFICE BIGGER PICTURE

ENERGY Energy Efficiency & Renewable Energy VEHICLE TECHNOLOGIES OFFICE Courtesy Vehicle Technologies Office of DOE

RECELL HAS FOUR FOCUS AREAS

ENERGY Energy Efficiency & Renewable Energy VEHICLE TECHNOLOGIES OFFICE

DIRECT RECYCLING

Typical Direct Recycling Process Flow

- Multiple processes investigated to mitigate risk
- Continual review of new project ideas
- End projects that are not showing promise in cost and performance
- These unit operations can benefit other recycling processes

MANUFACTURING SCRAP RECYCLING

Manufacturing scrap is an entry point with where we will validate a partial list of unit operations being developed within ReCell

EVERBATT MODEL FLOW

EverBatt breaks down and evaluates each stage of the battery's lifecycle providing the opportunity to compare each stage's impact to the overall impact.

ENERGY Energy Efficiency & Renewable Energy VEHICLE TECHNOLOGIES OFFICE

PARAMETERS

Default inputs are used as a starting point

INPUTS

Inputs are entered by number in tan cells and through drop down menus in blue cells

Collection & Transportation (click to link)						
From end use to collection	20	Miles				
From collection to recycler	1000	Miles				
From manufacturer to recycler	500	Miles				
From recycler to cathode producer	500	Miles				
From cathode producer to manufacturer	500	Miles				
Include shipping manufacturing scrap material to recycler	No					
Include shipping rejected cells to recycler	No					

DEFAULT PARAMETERS

Parameters are overwritten by typing in a new number in the tan "User-defined" cells

1.3 Truck payload (ton)							
	Selected	Default	User-defined				
Heavy heavy-duty truck	25	25					
Medium heavy-duty truck	8	8					

1.4 Transportation cost (\$/ton-mile)

	Nonhazardous materials			Hazardous materials				
	Sele	cted	Default	User-defined	Sel	ected	Default	User-defined
Rail	\$	0.05	\$ 0.05		\$	0.97	\$ 0.97	
Heavy heavy-duty truck	\$	0.14	\$ 0.14		\$	6.28	\$ 6.28	
Medium heavy-duty truck	\$	0.15	\$ 0.15		\$	9.40	\$ 9.40	
Ocean tanker	\$	0.02	\$ 0.02		\$	0.50	\$ 0.50	
Barge	\$	0.02	\$ 0.02		\$	0.50	\$ 0.50	

OUTPUT

Model output is consistent between lifecycle stages

Recycle							
	Pyro	Hydro	Direct	Custom			
Cost per kg cell recycled	\$	\$	\$				
Energy use in MJ per kg œll recycled							
Total Energy	15.959	20.987	6.494				
Water use in gallon	5.3	0.5	1.5				
Total Emissions in g per kg cell recycled							
VOC	0.342	0.333	0.098				
CO	1.688	1.439	0.421				
NOx	5.478	2.700	0.789				
PM10	0.248	0.228	0.107				
PM2.5	0.208	0.207	0.076				
SOx	17.297	22.332	0.765				

Other outputs include:

* Example data is from hypothetical processes and will vary depending on process specifics

Energy from fossil fuels, coal, natural gas and petroleum Total emissions from BC, OC, CH₄, N₂O, CO₂, CO₂ (w/C in VOC &CO), and GHGs

FACILITIES

Center accomplishments - cont'd

- ReCell Laboratory Space
- Equipment
 - Screener
 - Magnet
 - Froth column
 - Calciners
 - Powders hood
 - Sink/float separation
 - Aspirator
 - CSTR

Courtesy Argonne

RECELL INDUSTRY COLLABORATION MEETING

November 2019

134 people from 76 organizations

Provided an opportunity for ReCell and industry stakeholders to exchange challenges and ideas.

The meeting included stakeholders from every corner of the vehicle battery value chain

COLLABORATION AND ACKNOWLEDGEMENTS

Support for this work from the Office of Vehicle Technologies, DOE-EERE, is gratefully acknowledged – Samm Gillard, Steven Boyd, and David Howell

1885

Michigan

University

Technological

Shabbir Ahmed (Argonne) Yaocai Bai (ORNL) Ilias Belharouak (ORNL) Ira Bloom (Argonne) Anthony Burrell (NREL) Zheng Chen (UCSD) Jaclyn Coyle (NREL) Qiang Dai (Argonne) Sheng Dai (ORNL) Erik Dahl (Argonne) Zhijia Du (ORNL) Alison Dunlop (Argonne) Jessica Durham (Argonne) Kae Fink (NREL) Tinu Folayan (MTU) Linda Gaines (Argonne) Daniel Inman (NREL)

Andy Jansen (Argonne) Sergiy Kalnaus (ORNL) Matt Keyser (NREL) Greg Krumdick (Argonne) Jianlin Li (ORNL) Albert Lipson (Argonne) Huimin Luo (ORNL) Josh Maior (NREL) Margaret Mann (NREL) Tony Montoya (Argonne) Helio Moutinho (NREL) Nitin Muralidharan (ORNL) Andrew Norman (NREL) Lei Pan (MTU) Anand Parejiya (ORNL) Kyusung Park (NREL) Brvant Polzin (Argonne)

Kris Pupek (Argonne) Vicky Putsche (NREL) Seth Reed (Argonne) Bradley Ross (Argonne) Shriram Santhanagopalan (NREL) Jeff Spangenberger (Argonne) Venkat Srinivasan (Argonne) Darlene Steward (NREL) Nathaniel Sunderlin (NREL) Jeff Tomerlin (NREL) Steve Trask (Argonne) Jack Vaughev (Argonne) Yan Wang (WPI) Olumide Wnjobi (Argonne) Zhenzhen Yang (Argonne) Jiuling Yu (NREL) Ruiting Zhan (MTU)

ADVANCED BATTERY RECYCLING

NERGY Efficience Renewable Ener VEHICLE TECHNOLOGIES OFFICE

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

VEHICLE TECHNOLOGIES OFFICE

E-Mail: recell@anl.gov Website: www.recellcenter.org