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3. Recycling: Material recovery, design, logistics
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Key Points

* Large scale retirements of electric vehicle (EV) batteries will begin to occur
within the next 5 to 10 years (~3.5 to 30 GWh of battery retirements)

e Logistics, infrastructure, and knowledge sharing are key barriers for end-
of-life (EOL) management

* Global value chains for electronic wastes, battery materials, and used
vehicles pose further jurisdictional and equity challenges

* Mineral resources unlikely to limit battery manufacturing over the medium
term, but recycling is critical in the long term

* Low-value of recovered materials could be a barrier to capital/investment
required to ramp recycling infrastructure

* Battery reuse is promising, but there are policy, technical and market
barriers
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Deployment Trends
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Deployment Trends

In 2019, ~90% of EV batteries deployed
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Cathode Chemistry

Nickelate - NCA/NCM

Manganese Spinel - LMO

Phosphate - LFP

Lithium Chemistries
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Charge
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Source: H. Ambrose, A. Kendall, Effects of battery chemistry and performance on the life cycle greenhouse gas intensity of electric mobility. 6

Transportation Research Part D: Transport and Environment 47, 182 194 (2016).



Nissan Leaf Gen 1 vs. Gen 2 ->

Deployment Trends
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Key factors affecting battery lifetime
(i.e. battery degradation)

Cycling
Depth of discharge
Charge/discharge rate

Temperature
Time




Battery Lifetime

* Further improvements in the
useful life of batteries are
likely

e Oversizing could be a
reliable strategy for
increasing cycle life

* Lifetime has implications for
both capital investments and
secondary applications

Fortenbacher, P., Mathieu, J. L., & Andersson, G. (2014, August). Modeling,
identification, and optimal control of batteries for power system applications. In
Power Systems Computation Conference (PSCC), 2014 (pp. 1-7). IEEE.
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Battery Lifetime
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Battery Lifetime is Improving
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Short-term vs. Long-term Constraints

* Potential for >1 billion 40 kWh batteries given current
mineral reserves and LIB electrode technologies?

* Lithium and cobalt are the closest lithospheric constraints
(depending on technology development!)

e Currently, there is a global ramp-up in production of battery
materials

* But, mineral reserves are geographically concentrated which
could create supply risks

1Wadia, C., Albertus, P, & Srinivasan, V. (2011). Resource constraints on the battery energy storage potential for grid
and transportation applications. Journal of Power Sources, 196, 1593-1598. doi:10.1016/j.jpowsour.2010.08.056
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Supply Risks

Major mining sites of Cobalt, Lithium, Nickel, and Manganese
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Global Battery Alliance, (2020). Retrieved from: http://www3.weforum.org/docs/WEF_A Vision _for_a_Sustainable_Battery Value Chain_in_2030 Report.pdf
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Supply Risks

* Mineral reserves can increase with
demand

* Cobaltis likely the main risk, as
reserves are highly concentrated
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Olivetti, E. A., Ceder, G., Gaustad, G. G., & Fu, X. (2017). Lithium-ion battery supply chain
considerations: analysis of potential bottlenecks in critical metals. Joule, 1(2), 229-243.
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Oliveira, L., Messagie, M., Rangaraju, S., Sanfelix, J., Hernandez Rivas, M., & Van Mierlo, J. (2015).£i-ssues of
lithium-ion batteries — from resource depletion to environmental performance indicators. Journal of Cleaner
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Lithium Reserves

World Lithium Reserves in 2018 (source: USGS)
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Total: 14 million tons

Jaskula, B. W. (2019). Mineral commodity summaries - Lithium. US Geological Survey (USGS). Retrieved from
https://prd-wret.s3-us-west-2.amazonaws.com /assets/palladium/production/atoms/files/mcs-2019-lithi.pdf

e Current reserves are
~20% of global
resources.

* Major producing
regions for 2018 were
Australia (60%) and
Chile (19%).

* |[n 2018, the static
reserve ratio for
lithium was 167 years.

22
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World Cobalt Reserves in 2018 (source: UsGS)

Cobalt Reserves

Dhilippines

Canada

Russia
Madagascar
Other countries

* Current cobalt reserves
are ~28% of global
resources.
* Major producing region
is the DRC/Congo <

(64%), followed by -
Papua New

Russia (4%).

* |[n 2018, the static
reserve ratio for lithium
was 49 years.

Congo
(Kinshasa)

United States

South Africa

Total: 6.9 million tons

Shedd, K. B. (2019). Mineral commodity summaries - Cobalt. US Geological Survey (USGS). Retrieved from

https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/atoms/files/mcs-2019-lithi.pdf 23


https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/atoms/files/mcs-2019-lithi.pdf
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Cobalt Trade Flows 2015

 Over half of all cobalt comes from the
Katanga Copperbelt in DR Congo

* ~20% of which is extracted by artisanal
miners, some of which are children Refining
T =< g
Mining /-
9 [ ~
Trade flow in million USD \
M 1,000 | "
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- gl 9.0

Olivetti, E. A., Ceder, G., Gaustad, G. G., & Fu, X. (2017). Lithium-ion battery supply chain
considerations: analysis of potential bottlenecks in critical metals. Joule, 1(2), 229-243.



In-use Stocks

* Domestic resources
include in-use stocks of
materials.

* A move to low and no
cobalt cathodes,
combined with
development of
recycling, could help to
reduce demand for
primary production of
cobalt.
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Ambrose, H., Dunn, J., Kendall, A. (In Development) “In-use stocks of
critical materials for batteries and implications for future supply.”

2018
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Nobel Prize Winner Says Battery Recycling

Key to Meeting Electric Car Demand

John B. Goodenough M, Stanley Akira Yoshino
Prize share: 1/3 \’Vhi“iﬂgha"? Prize snare; 1/3

Prize share: 1/3

* The 2019 Nobel Prize in Chemistry was awarded to John
Goodenough, M. Stanley Whittingham, and Akira Yoshino
“for the development of lithium-ion batteries.”

* “The point is whether EV batteries can be
recycled,” said Akira Yoshino.

* The world’s transition to battery power... is set to boost
demand for commodities from copper to nickel and
cobalt. But there’s also concerns that miners won’t be
able to expand raw material supply fast enough, and any
shortfall will offer bigger opportunities for recycling.”

https://www.bIoomberg.com/news/articles/2019-10-10/nobel-prize-winner-says-battery-recycling-key-to-sezc?ure-supply


https://www.bloomberg.com/news/articles/2019-10-10/nobel-prize-winner-says-battery-recycling-key-to-secure-supply

Recovery
Value

 The value of recovered
materials may be
insufficient to motivate
the costs of collection
or recycling
infrastructure.

e Could be compounded
by a move away from
cobalt cathode
compounds.

Intro )Technolog Recycling

N |

Lithium (Li) Nickel (Ni) Cobalt (Co) Aluminum Iron(Fe) Manganese Copper parts
(Al) (Mn)

® NCA-Graphite LFP-Graphite LMO (Spinel)-Graphite

Retired EV Battery: Economic Analysis Averages

—
o

|

—
N

o w o

Recycled Materials Value ($/kWh)
w

Minimum Cost ($/kWh)  Maximum Cost ($/kWh)
Secondary Purchase Cost $10.00 $100.00
Collection, Testing. Repackaging $18.00 $140.00
Shipment to Recycling Market $1.70 $11.26
Recycling $16.79 $74.29
Sale of Raw Material $19.60 $36.15

Ambrose, H., Gershenson, D., Gershenson, A., & Kammen, D. (2014). Driving rural energy access: a second-
life application for electric-vehicle batteries. Environmental Research Letters, 9(9), 094004. 27
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Pathways

Mining

* There are currently a
small number of
commercial LIB recyclers.

* Pyrometallurgical Refining @
processes are most

commaon.

Battery
&) -

Battery
Manufacturing

Cathode
Production

28
Original Image: https://recellcenter.org/publications/
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PROCESS RECYCLing

Pathways

Mining

* There are currently a
small number of
commercial LIB recyclers.

* Pyrometallurgical Refining
processes are most
common.

Manufacturing

Cathode
Production

29
Original Image: https://recellcenter.org/publications/
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Pathways

P ROCESS RECYCLING

Mining

* There are currently a
small number of
commercial LIB recyclers.

Pyrometallurgical
processes are most
common.

Hydrometallurgical
processes could yield
higher recovery rates but
may be less economical.

Landfill

Battery

Manufacturin
Cathode e

Production

Original Image: ttps://recellcenter.org/publications/
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Intro )Technolog Recycling

?RocEsS RECYCLING
Mining

There are currently a
small number of
commercial LIB recyclers.

Pyrometallurgical Refining @
processes are most

commaon.

Refunctionalization

(i.e7directecycling)
aims tolavioid

resynthésis of the

cathode compound.

Hydrometallurgical
processes could yield
higher recovery rates but
may be less economical.

Battery
Use

Landfill

A mixed chemistry waste

. . el Battery
stream is a barrier for o Manufacturing
battery recycling.

Production

Original Image: ttps://recellcenter.org/publications/
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Recovery Costs and Impacts

* Primary costs of pyrometallurgical processes are energy input and
exhaust gas after treatment

* DOE supported research on direct cathode recycling suggests
environmental and economic advantages

B Virgin OPyro EHydro EDirect

200%
Costs and 0%
Impacts 160%
140%
Of 1 Kg .NMC111 120% $28.7 231 MJ 35.7 gal 288¢g

from Primary or 122;
Recycled 60%
. 40%

Materials po% lL
0%

Cost Energy Water SOx

https://recellcenter.org/publications/
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Design for Recycling, Remanufacturing, and
Reuse

* Integrated design
* Collaboration of experts to identify EoL constraints

* Modularity, standardized interfaces (housing), and design for
disassembly

* Ease of disassembling, cleaning, testing, and reassembling

* Barriers
e Economic feasibility
e Standardization of modules
* Open access data
* Reverse logistics
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Design for Recycling, Remanufacturing, and
Reuse

Example: Electrode and electrolyte flush

New cell design - Joint project of Argonne and
Oakridge National Laboratories N'ta'? ]A' tab
Enabling cell flushing for rejuvenation B

Potential Impact: port

* Reduced cost of recycling -

* Overall cost reduction B

* Reduced number of cells reaching end of life

* Extended cell life for primary- or second-use Initial design that will be used to determine pressures and flows
applications needed to “rinse” cells

Gaines, L. (2020). Presentation at Transportation Research Board Conference, Workshop on Battery Recycling. 34
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Battery Reuse

Second-life lithium-ion battery supply could surpass 200 gigawatt-hours per

year by 2030.

Utility-scale lithium-ion battery demand and second-life Second-life EV battery supply by

EV' battery supply,” gigawatt-hours/year (GWh/y) geography (base case”), GWh/y

B Second-life EV batteries supply (base case) 120 B Rest of world
B Second-life EV batteries supply (breakthrough case) B China

B Utility-scale lithium-ion-battery-storage demand B European Union

B United States

80
92 40
———— 15 L 45 P .
2020 20925 2030 2020 2025 2030

'Electric vehicle,
*0nly for batteries from passenger cars. https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/second- 35

life-ev-batteries-the-newest-value-pool-in-energy-storage


https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/second
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Battery Reuse .

Key Questions: | I |

Battery collection

* Data, testing, and
repurposing costs

Damaged?

SOH
assessment

* Reliability and
performance

Direct strategy for
2nd Jife

» Competition LEES

Dismantle strategy
for 2nd life

S &l W

Figure 2. Decision making flow diagram for batteries at the end of its 1* i#€on EVs

Casals, L. C., Garcia, B. A., & Cremades, L. V. (2017). Electric vehicle battery reuse: Preparing for a
second life. Journal of Industrial Engineering and Management, 10(2), 266-285.



Lead Battery Recycling: A Good Example?

LEAD-ACID

Batteries |

https://circuitdigest.com/tutorial/lead-acid-battery-working- https://en.wikipedia.org/wiki/Electric_vehicle battery
construction-and-charging-discharging 37


https://circuitdigest.com/tutorial/lead-acid-battery-working-https://en.wikipedia.org/wiki/Electric_vehicle_battery

Yes and no...

* |n 2018, ~70% of lead
consumed in the US came
from secondary (recycled
sources).

e ~27 million spent lead acid
batteries were exported to
low and middle income
countries

* There as many as 30
thousand sites for informal
lead acid battery recycling
globally.

Ericson, B., et al. (2016). The global burden of lead toxicity
attributable to informal used lead-acid battery sites. Annals of
global health, 82(5), 686-699.

United States Geological Survey. Lead statistics and information.

http://minerals.usgs.gov/minerals/pubs/commodity/lead/
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Soil Pb levels
<40 ppm
* Lead soil contamination is a Iegacy issue for the 40 - 80 ppm

I 80 - 400 ppm
I 400 - 1000 ppm
« Over 25% of properties surveyed around Exide B > 1000 ppm

. o Bl The Exide facility
battery recycling facility exceeded clean-up [ Study area

threshold (400 ppm lead in soil). [ City boundaries

Wu, A. M., & Johnston, J. (2019). Assessing Spatial Characteristics of Soil Lead Contamination in the 38
Residential Neighborhoods Near the Exide Battery Smelter. Case Studies in the Environment.

South Coast Basin


http://minerals.usgs.gov/minerals/pubs/commodity/lead

] ) o) rechnoiogy) wiatrias) receing) reuse
Global value chains for e-waste
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